微慑信息网

数据泄露频发,数据水印技术如何做到事后溯源追责?

摘要
数据泄露是一个老生常谈的安全话题。据不完全统计,平均每天有十起以上公开曝光的数据泄露事件,从暗网数据交易监控到的各个行业数据泄露,到新冠疫情期间频频发生的公民个人隐私泄露。从泄露原因看,既有外部黑客攻击因素,也与内部员工泄露有关。在企业内部场景中,发生数据泄露后如何追究是哪个员工泄露了数据?在数据分发或与第三方数据共享的场景中,如何通过泄露数据进行溯源取证——具体是哪家组织/第三方由于安全失责原因导致了数据泄露?数据水印(或称数据库水印)作为一种有效的针对泄露溯源场景而兴起的安全技术,近年来由于安全需求的驱动受到了广泛关注。本文首先将介绍数据库水印的背景,然后重点阐述数据库水印的基本原理,最后介绍其在两类典型场景的应用——针对企业员工、以及组织机构的泄露溯源。
关键词:数据库水印、数据泄露、溯源追责、大数据安全
一、背景
数据泄露问题的严峻程度逐年升高。据Risk Based Security(RBS)机构在2020年Q3季度的报告,2020年1月至9月全球公开披露的数据泄露事件有2953起,是2019年同时段事件数量(6021起)的49%;然而涉及的泄露数据记录数量高达361.07亿条,相比2019年同时段的泄露记录(83.54亿)上涨了332.21%,创历史新高。总体来说,2020年全球数据泄露状况不容乐观。
近年来,数据泄露事件不仅与黑客攻击、服务器配置不当有关,内部人员泄露也成为一个重要的原因。例如,2020年4月,浙江某农商银行因员工违规泄露用户信息被处罚;同年5月,江苏警方破获一起内部员工贩卖银行个人金融信息的案件,涉及记录50,000多条;8月,调查发现圆通内部员工与外部不法分子勾结导致40万条个人信息泄露。另外,疫情期间收集的个人信息由于内部人员主动外发原因导致的数据泄露频频发生,比如2020年1月,超7000武汉返乡人员的个人信息被泄露,其中包括公民的身份证号码,电话号码,具体家庭住址,列车信息等;同年7月,山东青岛胶州中心医院6000余人的就诊名单发生泄露,涉及患者的详细个人信息。数据的价值性与变现能力导致数据黑灰产愈发猖獗,暗网每天活跃着各类泄露数据的交易。泄露溯源是从源头上根治黑灰产与数据泄露问题的关键。溯源一方面可以帮助企业了解内部安全管理与技术措施的薄弱环节,另一方面对实施犯罪行为的泄露者可以起到心理威慑的作用,从而有效减少类似事件的发生。然而,面对暗网或公开网络等环境中的数据泄露事件,多数情况下无法做到准确的溯源——是谁泄露的?在哪里泄露的?是什么时间泄露的?
数据库水印作为一种在学术界深入研究的数据安全技术,被公认是有效地解决以上溯源痛点问题的重要手段,近年来在工业界也得到足够的重视与关注。下面将聚焦该技术的机制原理、应用场景两个层进行介绍。
二、数据库水印

数据库水印(简称数据水印)是一种将标识信息(如版权信息、机构/员工ID)通过一定的规则与算法隐藏在结构化数据中的技术。隐藏后数据库的使用价值几乎不变。其主要用于版权保护或泄露追踪溯源(本文关注后者)。广泛地说,数据库水印属于数字水印的其中一个分支。除数据库水印外,根据嵌入载体不同,数字水印还包括图像水印、视频水印、音频水印、文本水印和软件水印等。其中,最早的数字水印技术是应用在图像领域中,即图像水印发展较为成熟。数据库水印技术在安全需求驱动下,近年来得到快速发展与应用。下面从数据库水印的方案框架、评估指标、水印攻击和典型算法四个方面对其进行全面概述与介绍。

2.1方案框架

数据库水印是将水印信息(数据量少)隐藏到数据库载体(数据量比较大)中,有两种隐藏方式:一种是隐藏在数据库的文件头中,另一种是隐藏在数据库包含的关系表中,通常指的后者,本文指代也是该方式。
具体如何将水印信息隐藏到数据库(关系表)中呢?其方案框架如图1所示。它包括水印嵌入端和提取端,包括两个核心算法:水印嵌入算法和水印提取算法。
  • 水印嵌入端:企业或组织机构通过水印嵌入算法,将水印标识信息W(如下载该数据库的员工ID)隐藏到原始数据库D中,最终得到含水印的数据库,为了保证安全性,该过程通常由密钥控制

  • 水印嵌入端:当数据库发生泄露后,企业或组织机构希望查找清楚是谁泄露该数据库,它通过水印提取算法,在获得的数据库进行水印提取或相关性检测操作,进而溯源确定最终的泄露主体,追究责任

数据泄露频发,数据水印技术如何做到事后溯源追责?
1 数据库水印方案框架
需注意的是,在数据泄露过程中,由于泄露主体可能会有意或无意对数据库进行一些操作,比如对数据库的元组进行随机抽样、选择部分列、修改数据库的某些值或对格式进行调整,这些操作通常称为水印攻击(后续将介绍),通常会对水印信息造成一定影响,这要求设计的水印嵌入/提取算法具有一定强度的鲁棒性,即遭受攻击后同样能提取/检测到正确的水印信息。

2.2评估指标

评估一个数据库水印算法的性能优劣通常主要由以下的三个指标进行判定:
  • 透明性。也称为不可感知性,包括主观不可感知性和客观不可感知性,前者是指用户主观体验不出数据库一些变化;后者由数学指标进行定义,比如均值和均方差的改变率,改变率越小,不可感知性/透明性越好。
  • 鲁棒性。在溯源场景也称为溯源成功率,是指遭受各类攻击后仍然能正确提取水印的能力。通过多种水印攻击测试,结合提取水印比特的误码率或检测的相关性值进行综合评估。
  • 嵌入容量。数据库可以嵌入的水印比特信息数量,通常使用每个元组可嵌入的水印比特数或总嵌入量指标进行评估。
数据泄露频发,数据水印技术如何做到事后溯源追责?
2 三种性能指标的关系
数字库水印指标三个基本指标:透明性、鲁棒性和嵌入容量是相互矛盾、相互影响的关系,三者不可能同时达到最优,如图2所示。比如设计一个鲁棒性强的数据库水印系统,意味着需要增强水印信号,那么意味着将破坏更多原始数据库信号,透明性将减弱。
除此以外。在实际应用中,数据库水印还需要考虑以下两个指标:
  • 安全性。攻击者在没有掌握密钥情况下,不能提取到隐藏的水印信息、不能破坏水印信息、且不能伪造或替换非法的水印信息。相比鲁棒性指标,安全性指标考虑范畴更大、要求更严。
  • 实用性。是指算法的应用效果,包括嵌入/提取算法的执行效率,所需的内存空间。

2.3水印攻击

数据库水印攻击的目的是破坏水印信息或使得水印检测结果失效。攻击者在获得数据库的全部或部分使用价值的前提下,对数据库执行一些攻击操作,主要包括:
  • 修改攻击(Alteration attack):对数据库的属性值进行部分修改。
  • 删除攻击(Deletion attack):也称称为抽样攻击,选择数据库的部分元组或部分属性列。
  • 插入攻击(Insertion attack):在数据库插入新的记录或者增加新的属性列。
  • 置换攻击(Permutation attack):改变数据库的元组顺序。
  • 混淆攻击(Obfuscated attack):在已有的含水印数据库中嵌入一个新的伪造水印。
  • 复合攻击(Multifaceted attack):综合前面提到两种或以上攻击方法。

2.4嵌入方法 

数据库水印算法一方面需要更好地将水印标识信息隐藏到数据库中,另一方面需要满足嵌入后的透明性——仅允许一定范围内失真,因此它本质上可看成一个带约束条件的最优化问题。从信号角度看,数据库水印嵌入过程可用看成一个大信号叠加了一个小信号,经过有噪信道后,如何检测到小信号——小信号的编解码问题。根据水印嵌入过程是否需要改变原始数据库的元组的属性值和格式,嵌入方法主要可分为两大类:
1)    基于元组修改的水印嵌入算法:实质上,任何水印信息可编码转换成一连串由“0”“1”组成的比特字符串。针对元组的数值属性(如年龄、时间戳)和类别属性(如身份证号、地址信息等)两种类别,嵌入方法又可再分为两种子类别:
  • 数值属性的嵌入方法:其主要思路是通过一定的规则,修改原始数值的大小而嵌入“0”或“1”两种水印比特。为了保留数据可用性,修改应满足一定的约束条件(如统计特性)。最为简单的方式,是在数值属性值的最低有效位(Least Significant Bit, LSB)进行替换,比如在年龄18(二进制“10010”)最小LSB位嵌入“0”变为18( “10010”),嵌入“1”变为19(二进制“10011”)。其他可以在小数点后进行嵌入,或者使用不同的量化索引等嵌入机制。
  • 类别属性的嵌入方法:类别属性不能直接修改数值编码,一种思路是嵌入数据库用户不易察觉的字符或标点,比如通过在类别属性值末尾嵌入回车符、换行符表示“0”“1”,以及嵌入不同的空格数量等,常见嵌入规则如表1所示;另一种思路是基于语义的近义词进行嵌入,首先构建关键词的近义词库并确立顺序,嵌入过程根据约定规则嵌入“0”或“1”比特。
1 数据库类别属性的常见嵌入规则
嵌入规则
水印比特“0”
水印比特“1”
Rule 1
(回车符:/r
(换行符:/n
Rule 2
(没有空格)
(一个空格)
Rule 3
(首字母大写)
(首字母小写)
Rule 4
,(全角)
,(半角)
2)    基于伪行/伪列的水印嵌入算法:不同于第一类,该类算法无需修改原有数据库元组,而是首先生成伪行或伪列,然后在新数据中按照一定规则嵌入水印。
  • 伪行水印:先基于元组各项属性的数据类型、数据格式、取值范围的约束条件生成多个伪造的行,然后将水印按前面所述的数值属性或类别属性嵌入规则嵌入水印比特。
  • 伪列水印:伪造新的属性列,包括数值属性列或类别属性列,生成的伪列应尽可能与该关系表的其他属性相关,不容易被攻击者察觉,然后将水印比特嵌入到伪造的新列中。
水印提取是水印嵌入的逆过程,为了提高水印抵抗攻击的能力(鲁棒性),可采取重复嵌入,或者引入纠错编码机制进行嵌入。
三、数据库水印与两类泄露溯源场景
针对泄露溯源的目标主体不同,数据库水印溯源包括两类场景:企业员工的泄露溯源和企业机构的泄露溯源。

3.1针对企业员工的泄露溯源 

数据作为企业的重要资产,每天有大量数据在频繁交互,包括商业数据、财务报表用户和个人信息,它们以数据库(关系表)、Excel和CSV等形式存储和传输和处理。文件的频繁交互增加了数据泄露的风险,比如员工将下载的数据文件上传至互联网(比如公开网盘、论坛)、非法下载数据售卖给第三方,离职员工恶意下载数据等。
 数据泄露后的溯源是一项重要的任务,一方面有利于了解安全管理与措施的薄弱环节,另一方面可起到心理威慑作用,追究责任,杜绝类似事件再次发生。针对企业员工的泄露溯源场景如图3所示,任何员工下载数据到本地时,会触发水印嵌入器将水印信息(如员工ID、时间戳等)自动地嵌入到下载数据库(关系表)中。当数据发生泄露时,企业可提取水印信息,通过匹配与关联分析,溯源取证泄露者的标识ID,以及下载时间等信息。
数据泄露频发,数据水印技术如何做到事后溯源追责?
3针对企业内部员工的泄露溯源应用场景

3.2针对组织机构的泄露溯源

在大数据时代,数据开放、共享、交换、发布等场景需求变得越来越多。其中包括以下一些典型场景:
  • 政府部门数据共享场景:包括从中央到地方的纵向数据共享,以及省市地区之间横向数据共享。
  • 企业之间的数据共享:多家企业将自身的数据进行融合,联合进行数据挖掘与机器学习任务。
  • 研究性质的数据发布:金融/医疗将限制开放给科研机构、以及高校,进行数据统计与数据分析。
  • 商业性质的数据外包:企业有一批数据,外包给第三方进行数据分析或处理。
数据开放共享能促进数据价值的释放,然而也带来更多的数据泄露风险。同一份数据的共享(或多次分发过程)往往涉及到多个数据接收机构,若其中一方由于安全失责原因导致了数据泄露,数据泄露后如何正确溯源到真正的泄露方呢?这是溯源的第二类场景,如图4所示:分发机构在原始数据库嵌入不同的水印信息(如机构ID、时间戳)给不同的接收机构。一旦发生相关的数据泄露,分发机构可提取泄露数据库的水印信息,通过溯源取证,进而对泄露主体进行追责。从合规视角看,针对组织机构的泄露溯源可促进数据接收方落实数据安全保护责任,强化接收方实施相应级别的安全措施。
数据泄露频发,数据水印技术如何做到事后溯源追责?
4针对组织机构的泄露溯源应用场景
四、小结
随着数字化转型的深入推进,企业内部大量数据在频繁交互,同时企业间有大量的数据共享、交换的需求。然而,数据流通给数据安全带来巨大的挑战,其中潜在的数据泄露风险是首要面临的安全问题。本文介绍的数据库水印技术,在数据泄露前在结构化数据(关系表)载体中隐藏水印标记信息;在数据泄露后可提取水印,可作为泄露主体(包括针对企业员工、组织机构)溯源追责的有效技术手段,可积极促进数据的流动与共享。另一方面,数据库水印技术在一定程度上可以起到心理威慑作用,强化数据接收机构的安全保护意识与责任。
实际上,数据库水印技术相比图像水印技术,仍然处于理论与技术发展阶段,目前仍有一些关键问题有待解决:①结合数据库的数据实用性约束,通用数据库水印模型的设计;②针对分类属性或短文本属性的鲁棒水印嵌入方法;③如何设计不依赖数据库主键的水印嵌入和提取算法;④数据库水印系统如何对不同水印参数、密钥以及额外信息进行有效管理等。

本文为数据安全系列文章,欢迎阅读该系列的相关文章:

法规标准篇:

《浅析数据安全与隐私保护之法规》

《数据淘金热时代下的隐私问题何去何从——探讨国内外法规下的匿名化概念》

治理体系篇:

《拨开云雾见天日——数据安全治理体系》

《聚焦数据安全建设难点,绿盟科技发布《数据安全白皮书2.0》》

实践技术篇:

《鱼和熊掌兼得——隐私保护与价值挖掘》

《大数据下的隐私攻防:数据脱敏后的隐私攻击与风险评估》

《大数据下的隐私攻防02:身份证号+手机号如何脱敏才有效?》

《数据匿名化:隐私合规下,企业打开数据主动权的正确方式?》

数据安全事件解读:

《透过隐私合规,看数据安全技术发展趋势》

《2019年国内外数据泄露事件盘点——个人信息保护刻不容缓》

RSAC创新技术解读:

《RSA2020创新沙盒Securiti.ai—解决隐私合规痛点的一站式自动化方案》

《RSA2019创新沙盒Duality:基于同态加密的数据分析和隐私保护方案》

 

参考文献

  1. Risk based security, 2020 Q3 Report: Data BreachQuickView: https://pages.riskbasedsecurity.com/hubfs/Reports/2020/2020%20Q3%20Data%20Breach%20QuickView%20Report.pdf
  2. 绿盟科技《网络安全观察2020》,http://blog.nsfocus.net/wp-content/uploads/2021/01/The-Observed-of-Cyber-Security-2020.pdf.
  3. 绿盟科技《拥抱合规、超越合规:数据安全前沿技术研究报告》,http://blog.nsfocus.net/wp-content/uploads/2021/01/data_security_advanced_technology_research_NSFOCUS_1228.pdf.
  4. Sion R, Atallah M, Prabhakar S. Rights protectionfor relational data. IEEE transactions on knowledge and data engineering, 2004,16(12): 1509-1525.
  5. Sion R, Atallah M, Prabhakar S. Rights protectionfor categorical data. IEEE transactions on knowledge and data engineering,2005, 17(7): 912-926.
  6. Shehab M, Bertino E, Ghafoor A. Watermarkingrelational databases using optimization-based techniques. IEEE transactions onknowledge and data engineering, 2007, 20(1): 116-129

 

关于天枢实验室

天枢实验室聚焦安全数据、AI攻防等方面研究,以期在“数据智能”领域获得突破。

内容编辑:天枢实验室 陈磊 责任编辑:王星凯

本公众号原创文章仅代表作者观点,不代表绿盟科技立场。所有原创内容版权均属绿盟科技研究通讯。未经授权,严禁任何媒体以及微信公众号复制、转载、摘编或以其他方式使用,转载须注明来自绿盟科技研究通讯并附上本文链接。

关于我们

绿盟科技研究通讯由绿盟科技创新中心负责运营,绿盟科技创新中心是绿盟科技的前沿技术研究部门。包括云安全实验室、安全大数据分析实验室和物联网安全实验室。团队成员由来自清华、北大、哈工大、中科院、北邮等多所重点院校的博士和硕士组成。

绿盟科技创新中心作为“中关村科技园区海淀园博士后工作站分站”的重要培养单位之一,与清华大学进行博士后联合培养,科研成果已涵盖各类国家课题项目、国家专利、国家标准、高水平学术论文、出版专业书籍等。

我们持续探索信息安全领域的前沿学术方向,从实践出发,结合公司资源和先进技术,实现概念级的原型系统,进而交付产品线孵化产品并创造巨大的经济价值。

原文始发于微信公众号(绿盟科技研究通讯):数据泄露频发,数据水印技术如何做到事后溯源追责?

拓展阅读(点评/知识):

简介编辑
在实际问题中,系统特性或参数的摄动常常是不可避免的,产生摄动的原因主要有两个方面:一个是由于测量的不精确使特性或参数的实际值会偏离它的设计值(标称值),另一个是系统运行过程中受环境因素的影响而引起特性或参数的缓慢漂移。 [2]
目前对鲁棒性的研究主要限于线性定常控制系统,所涉及的问题包括稳定性、无静差性、适应控制等。鲁棒性问题与控制系统的相对稳定性(频率域内表征控制系统稳定性裕量的一种性能指标)和不变性原理(自动控制理论中研究扼制和消除扰动对控制系统影响的理论)有着密切的联系,内模原理(把外部作用信号的动力学模型植入控制器来构成高精度反馈控制系统的一种设计原理)的建立则对鲁棒性问题的研究起了重要的推动作用。早期的鲁棒控制主要硏究小摄动分析上的灵敏度问题。现代鲁棒控制则着重研究控制系统中非微有界摄动下的分析与设计理论和方法以及控制器中存在非微有界摄动的非脆弱控制方法。 [2]
要建立不确定性系统的分析和设计方法,使系统具有强的鲁棒性。应用反馈来设计鲁棒控制系统是建立在被控对象不完整描述的基础上,这区别于线性多变量控制系统设计,它要求对象的数学模型预先精确已知。 [3]
分类编辑
鲁棒性包括稳定鲁棒性和品质鲁棒性。一个控制系统是否具有鲁棒性,是它能否真正实际应用的关键。因此,现代控制系统的设计已将鲁棒性作为一种最重要的设计指标。 [3]
为了解决控制系统的鲁棒性问题,近年来主要出现了两个主攻方向:一个是主动式(active)适应技术,即通常称的自适应控制系统设计技术。它应用辨识方法不断了解系统的不确定性,并在此基础上调整控制器的结构与参数,从而使系统满足性能指标要求另一种是被动式(passive)适应技术,即一般称的鲁棒控制设计技术。对具有不确定性的系统设计一个控制器,使系统在不确定性范围内工作时,满足系统的设计性能指标要求。 [3]
控制系统的鲁棒性是指系统在不确定性的扰动下,具有保持某种性能不变的能力。如果对象的不确定性可用一个集合描述,考察控制系统的某些性能指标,如稳定性品质指标等,设计一个控制器,如果该控制器对对象集合中的每个对象都能满足给定的性能指标,则称该控制器对此性能指标(特性)是鲁棒的。因此,在谈到鲁棒性时,必须要求有一个控制器,有一个对象集合和某些系统性能对控制系统来说,两个重要的鲁棒概念是: [3]
稳定鲁棒性:一个控制器如果对集合P中的每一个对象都能保证系统稳定则是鲁棒稳定的。 [3]
品质鲁棒性:一个控制器如果对集合P中的每一个对象都能保证系统稳定和一种特定品质则认为是品质鲁棒的。 [3]
鲁棒控制编辑
鲁棒控制是一个着重控制算法可靠性研究的控制器设计方法。鲁棒性一般定义为在实际环境中为保证安全要求控制系统最小必须满足的要求。一旦设计好这个控制器,它的参数不能改变而且控制性能保证。 [1]
鲁棒控制方法,是对时间域或频率域来说,一般假设过程动态特性的信息和它的变化范围。一些算法不需要精确的过程模型但需要一些离线辨识。一般鲁棒控制系统的设计是以一些最差的情况为基础,因此一般系统并不工作在最优状态。 [1]
鲁棒控制方法适用于稳定性和可靠性作为首要目标的应用,同时过程的动态特性已知且不确定因素的变化范围可以预估。飞机和空间飞行器的控制是这类系统的例子。过程控制应用中,某些控制系统也可以用鲁棒控制方法设计,特别是对那些比较关键且(1)不确定因素变化范围大;(2)稳定裕度小的对象。 [1]
但是,鲁棒控制系统的设计要由高级专家完成。一旦设计成功,就不需太多的人工干预。另一方面,如果要升级或作重大调整,系统就要重新设计。 [1]
通常,系统的分析方法和控制器的设计大多是基于数学模型而建立的,而且,各类方法已经趋于成熟和完善。然而,系统总是存在这样或那样的不确定性。在系统建模时,有时只考虑了工作点附近的情况,造成了数学模型的人为简化;另一方面,执行部件与控制元件存在制造容差,系统运行过程也存在老化、磨损以及环境和运行条件恶化等现象,使得大多数系统存在结构或者参数的不确定性。这样,用精确数学模型对系统的分析结果或设计出来的控制器常常不满足工程要求。近些年来,人们展开了对不确定系统鲁棒控制问题的研究,并取得了一系列研究成果。Hoo鲁棒控制理论和μ分析理论则是当前控制工程中最活跃的研究领域之一,多年来一直备受控制研究工作者的青睐。作者通过系统地研究线性不确定系统、时间滞后系统、区间系统、离散时间系统的鲁棒稳定性问题,提出了有关系统鲁棒稳定性的分析和设计方法。 [1]
鲁棒控制系统设计编辑
鲁棒控制系统的设计有多种方法,包括根轨迹法、频率响应法和ITAE。鲁棒控制系统设计要完成的两个基本任务是确定控制器结构和调节控制器参数,以获得“最优”系统性能在鲁棒控制系统的设计过程中,通常以假定对受控对象有全面了解为前提的,并且通常是以线性时不变连续模型来描述受控对象。控制器结构的选择一般总是以使系统响应能够满足某种性能判据为出发点。 [4]
在很多场合,控制系统的理想设计目标是,系统能精确并及时地重现输入。相应地,系统的Bode图应该非常平整,即具有无限带宽的0dB增益并且相角始终为0。但是由于任何系统都包含有储存能量的电感型或电容型部件,因此,实际中并不存在这样的理想系统。这些储能元件以及它们与耗能部件的联系,决定了系统的动态特性。这样的系统可以相当精确地重现某些输入,但对另外一些输入却完全不能重现,即实际系统的带宽总是有限的。 [4]
鲁棒性设计编辑
在通过使产品性能达到目标值并减少它们的偏差来优化设计时,鲁棒设计技术既采用传统的思想,又采用新的思想。以下是这些思想的一部分。 [5]
损失函数
损失函数是一个二次式,用来估算均值相对于目标值及产品性能的偏差所带来的成本,这种成本是依据用户认为的产品缺陷,引起的经济损失得来的。传统的方法仅在产品性能超出用户规格要求时,才计算这种损失。鲁棒设计方法在目前产品性能分布(均值附近的分布)的基础上估算这种损失。 [5]
正交阵列
正交阵列有几个独特的性质。它们可以在几个范围内作用,但最通常的是在两或三个范围内。它们最重要的一个属性是平衡性:当一列中范围是常数,其它列中的所有其它范围将通过它们的值旋转得到。通过运用阵列的这种平衡性,能有效地确定各因素的影响。 [5]
信噪比
信噪比是鲁棒设计实验输出性能偏差的衡量。信噪比(S/N)的目的是把输出性能的重复性表示成一个数。然后可对这个数进行相似的处理,如粘合强度例子中,为提高均值而进行的分析一样。 [5]
鲁棒设计实验编辑
进行鲁棒设计实验牵涉到前面提到过的许多质量工程工具的使用。这项工作的成功依赖于小组成员的正确选择、着重对适当的性能进行优化与检测,并且遵循方法学准则。成功进行鲁棒设计实验的步骤如下。 [5]
1.问题定义。进行鲁棒设计实验的第一步是勾划出实验的目标,并定义要进行优化的工艺或设计性能。然而每次只能优化一种性能,在进行实验时能测定许多性能,然后分别进行分析。最后的参数选取是各种推荐参数的混合,取决于对每个目标性能水平不同目标的折衷考虑。 [5]
产生要优化的产品或设计的界限是很重要的。实验应限制在设计的一个小范围内。换句话说,实验不应试图对产品或工艺的所有步骤进行优化。 [5]
2.小组的创立与平稳。应挑选一个项目小组来进行实验和分析。小组应该由具有产品和工艺知识的人员组成,并征求与优化设计有关的所有人员的意见。他们没有必要对与问题有关的学科有深入的技术上的了解,但小组成员应该有进行类似设计的经验。小组应该能通过统计员或曾受过鲁棒设计训练的人员获得统计方法知识和特殊的鲁棒设计技术。 [5]
3.参数选取。鲁棒设计方法不包括缩小优化设计的选取参数集的筛选实验。但是,小组成员可能把这个方案当做试验较多的参数或相同参数的不同水平与组合的机会。这种情况下,可能要进行筛选实验以缩小参数的选取。 [5]
鲁棒性应用编辑
在实际中,鲁棒性的应用非常广泛,由于测量的不精确和运行中受环境因素的影响,不可避免地会引起系统特性或参数缓慢而不规则的漂移,所以在应用复杂性范式对各种类型控制系统进行设计时,都要考虑鲁棒性问题。如组织行为管理、制定战略规划、提供决策方案,生态系统的恢复性,动态平衡、遗传网络、遗传变异的阻尼,生物复杂性的发展定向进化进化的自动选择,免疫系统里的分布式反馈。神经系统,计算机网络系统,经济社会系统的经济博弈、社会制度、政治协议、体制机制等等。 [6]
值得一提的是,随着金融自由化、全球化的进程,金融创新趋势逐渐加强,金融系统的不确定性明显增加,金融决策环境更加复杂,金融市场环境和金融机构经营特征发生了根本性变化,许多学者加快对金融系统鲁棒性的研究,把研究成果用于投资决策的有效性、金融风险管理、资产配置等方面,取得了明显的效果。 [6]
最典型的是应用于复杂适应性系统中。不过,只有当它在一些环境下的使用能够达到用其他方式所不能达到的作用时才会有实际意义。同时还要注意成本与效益问题。作为一个普遍规律,在那些要求对于某些情景具有高容忍性并必然对另一些情景具有低容忍性的鲁棒系统中,存在严格的守恒规律。例如,一个航行器或者是高度易操作的,或者是非常能够抵抗住高射炮射击,但不是两者兼有的;又如经济增长与环境保护存在着博弈问题,经济要较快有序发展,必然要消耗资源并对环境造成一定的影响,而强调环境保护,在某种程度上会制约经济的增长。在设计和使用鲁棒性来解决上述问题时,须要考虑成本与效益问题。 [6]

本文标题:数据泄露频发,数据水印技术如何做到事后溯源追责?
本文链接:
(转载请附上本文链接)
http://vulsee.com/archives/vulsee_2021/0207_13828.html
转载请附本站链接,未经允许不得转载,,谢谢:微慑信息网-VulSee.com » 数据泄露频发,数据水印技术如何做到事后溯源追责?
分享到: 更多 (0)

评论 抢沙发

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址

微慑信息网 专注工匠精神

访问我们联系我们